153 research outputs found

    The Pairing Mechanism in HTSC investigated by Electronic Raman Scattering

    Full text link
    By means of electronic Raman scattering we investigated the symmetry of the energy gap Delta(k), its temperature dependence and its variation with doping of well characterized Bi2Sr2CaCu2O8+delta single crystals. The oxygen content delta was varied between the under- and the overdoped regime by subsequently annealing the same single crystal in Ar and O2, respectively. The symmetry analysis of the polarized electronic Raman scattering is consistent with a d_x^2-y^2-wave symmetry of the energy gap in both regimes. The gap ratio 2Delta_max/k_BT_c and its temperature dependence changes with doping similar to predictions of theories based on paramagnon coupling.Comment: 3 pages, LaTeX, 2 ps figures available on request to [email protected]

    Switching on the Lights for Gene Therapy

    Get PDF
    Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases

    Get PDF
    Neuroinflammation is a process characterised by drastic changes in microglial morphology and by marked upregulation of the 18-kDa translocator protein (TSPO) on the mitochondria. The continual increase in incidence of neuroinflammation and neurodegenerative diseases poses a major health issue in many countries, requiring more innovative diagnostic and monitoring tools. TSPO expression may constitute a biomarker for brain inflammation that could be monitored by using TSPO tracers as neuroimaging agents. From medical imaging perspectives, this review focuses on the current concepts related to the TSPO, and discusses briefly on the status of its PET imaging related to neuroinflammation and neurodegenerative diseases in humans
    • …
    corecore